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We demonstrate the use of the recently developed Global Element Method (Delves and 
Hall, J. Inst. Math. Appl. 23 (1979), 223-234) by applying it to the two dimensional singular 
boundary value problem introduced by Motz [Quart. Appl. Math. 4 (1946), 371-377.1 
The results obtained converge extremely rapidly even in the neighborhood of the singularity 
and suggest that the method is capable of efficiently handling singular problems. 

1. INTRODUCTION 

Variational methods (or the closely related Galerkin methods) have become popular 
for the numerical solution of differential equations. Two distinct approaches have 
developed, based respectively on a global (global variational method (GVM), see 
[lo] and local (finite element method (FEM), see [14] choice of trial functions. In 
practice, for sufficiently smooth problems, both approaches produce satisfactory 
results. 

Each approach has its advantages. The GVM is attractive since it is possible to 
achieve very fast convergence rates [3] and it is best adapted to relatively simple 
regions (e.g. circles, squares) for which a natural choice of trial functions can be made. 
A FEM, however, is well suited for an irregularly shaped region. 

Both the GVM and FEM, however, give poor convergence rates for problems 
containing non-polynomial behaviour. It is possible to improve matters by including 
in the trial function either special core terms (GVM and FEM) or singular elements 
(FEM), to represent the non-polynomial behaviour, but a certain amount of caution 
must be exercised since the inclusion of too many core terms can lead to ill-condi- 
tioned matrices due to the higher core terms being themselves approximated by 
the polynomial terms [5]. 

Recently, there has been proposed [2], a new variational approach, the global 
element method (GEM), which attempts to retain the flexibility of the FEM for 
awkward shaped regions and the high convergence rate of the GVM. In the GEM, 
the region is split into a (small) number of subregions, these being chosen from the 
geometry of the region or from the anticipated different solution behaviours in the 
various parts of the region. Within each subregion, a suitable expansion set is chosen, 
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continuity between each subregion being imposed implicitly by the variational func- 
tional (as opposed to the explicit imposition in a conventional FEM), and convergence 
is obtained by increasing the number of functions in each region (as in the GVM). 
With this approach terms describing non-polynomial behaviour can be systematically 
and straightforwardly included by using them as an expansion basis in a subregion 
containing the singularity. Moreover, the GEM as formulated in [2] permits the 
relaxation of the essential boundary conditions in the trial functions. The functional 
used in the GEM is somewhat similar to that previously considered in nuclear 
engineering [20, 211. However, the GEM differs in the treatment within each subregion 
and in the implicit treatment of the essential boundary conditions. The GEM can 
also be considered as a special case of a class of recently proposed non-conforming 
mixed methods [l], although the derivation and subsequent choice of expansion set 
are rather different. 

The GEM has previously been used [8] to obtain the solution of the one-dimensional 
Schrodinger equation with a discontinuous potential. Very good results were obtained 
together with a fast (exponential) convergence rate. In this paper, the GEM is applied 
to the two-dimensional harmonic mixed boundary value problem of Motz [12]. 
This problem exhibits singular behaviour and has previously been tackled by a variety 
of methods. We note here attempts using finite differences [12, 181; finite elements 
with the inclusion of either special singular functions [ll] or singular elements [15]; 
dual series methods [16, 171; and conformal transformation methods [19, 131. 

The conformal transformation methods (CTM) are of particular importance since 
they yield (subject to the determination of the special functions involved) the exact 
solution to the problem. 

In Section 2, the Motz problem and the GEM approach to the solution are outlined 
while section 3 describes the results obtained. Finally section 4 contains some further 
comments on the GEM. 

2. DESCRIPTION OF THE PROBLEM AND THE METHOD 

2.1. The Problem 

The problem considered is that first introduced by Motz [12] and can be presented 
in the form (see figure 1 and [ 161) 

vu = 0 in R:-l<x,(l, ,O<y<l (2.la) 

subject to the boundary conditions 

(2.lb) 

u=o on A0 

U=500 onBC 

au 0 -= 
an 

on OB, AD, CD 
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FIG, 1. The region ABCD over which Laplace’s equation is to be solved. The subregions used 
in the GEM are shown, together with the (s, t) parameterisation used in the blending function map. 

where a/an is the derivative in the direction of the (outward) pointing normal and the 
normalisation U = 500 on BC has become conventional for this problem. 

2.2. The GEM Applied to the Motz Problem 

One of the motivations for the introduction of the GEM was to permit suitable 
trial functions to be used near a given point without these trial functions “leaking” 
into adjoining areas (as in a conventional GVM or FEM). In [12] it is shown that near 
the origin 0, the exact solution to problem (2.1) has singularities in its derivatives 
and can be expanded, in terms of polar coordinates r, 8 centered on 0, as 

IJ = 1 fyy@-l)P cos 

i=l 

((W) q (2.2) 

the coefficients 0~~ being unknowns. 
We therefore choose to implement the GEM with the 4 subregions labelled in 

figure 1, region (1) being a semi circle of radius a centred on 0. The GEM then replaces 
problem (2.1) by the coupled set of problems in each of the four subregions Ri 
(i = 1,4) 

V2U’e) zx 0 inregionR, e= 1,2,3,4 (2.3a) 

subject to the boundary conditions 

U”’ = 0 on A’0 U’2’ = 0 on AA’ 

8lJ’l’ 
0 on OB’ - = 

an1 
ut3) = 500 on BC 

au’3’ - = 
an3 

0 on B’B 

aw - = 
an2 

0 on AD 

au(J) (2.3b) 
- = 

an4 
0 on CD 
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and the interface conditions 

U’l’ = U” 
au(t) 

I 
r,, = A’D’ 

a U’l’ on rlt where -=-- i 
r,, E B’C’ 

an1 ant r,, EE C’D’ 
(2.3~) 

U’4’ = j-J’0 r,, = D’D 
aw au@) on r,, where -=-- 
an, ant r,, = cc 

In equations (2.3b) and (2.3c), a/&z, represents the normal derivative in the outward 
direction for the appropriate region. In [2] it is shown that the unique function satis- 
fying eqs. (2.3) is the unique solution of the original problem (2.1) while using 
theorem 4 of [2] it can then be shown that the functional, 

adz) 
J(“‘(‘)) = jl jRc j (w:” + w’,c”) dx dy - 2 j-A, w(2) an, ds 

_ 2 j 
A’0 

,p !$? ds - 2 j (~(~1 - 500) F ds 
1 BC 3 

aw(l) (0 - $1') (??!$ _ ---) ds 

- i s,, (w(*’ - I&‘) (z - z) ds (2.4) 

is stationary about the true solution of equation (2.3) without requiring that the 
trial functions WC!) should satisfy either the boundary conditions (2.3b) or the inter- 
face conditions (2.3~). 

We introduce suitable expansion sets (N} in each region 

Then inserting (2.5) into functional (2.4) and finding the stationary value (w.r.t. CX!“‘) 
leads to the symmetric (4 x 4) block matrix equation for the variational parameters 

(0 % , 

HII B,2 B,, B,,’ 

@-2 He2 0 B24 

B* 

BE 
0 H33 B34 

B& Bc4 H44 II 
a1 
a2 

a3 

a4 1 = 0’ 
0 
g3 

0. 

(2.6) 
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Some typical matrix elements in equation (2.6) are 

& = ; 1 (j$) !?!$ + i?$ j$‘) ds i = l,..., Nl j = I,..., Nt 
r,c G 1 1 = 2, 3, 4 (2.7) 

g, = -500 s 
&) 
--L As 

BC an3 
i=l iV3 ,.*a, 

0 = zero matrix or vector of appropriate size. 
, Similar definitions apply for the remaining quantities in equation (2.6). 
The matrices Hii which appear in (2.6) are square. However the interface matrices. 

Bij are not necessarily square since we are free to use a different number of trial 
functions in each subregion. 

Equation (2.7) show that a GEM calculation is very similar in form to a conven- 
tional Rayleigh-Ritz calculation. Indeed, the latter method can be interpreted as a 
single element GEM with the trial functions chosen to explicitly satisfy the Dirichlet 
boundary conditions. 

2.3. Choice of Trial Functions 

In each subregion Rc, 1 = l,..., 4, we must choose a suitable set of trial functions. 
As indicated earlier, in R, it is natural to make the orthogonal expansion 

Jl) = 2 a~)r(2i-1)‘2 cos((2i - 1)/20) cw 

With this choice of trial function, each term of expansion (2.8) exactly satisfies the 
differential equation in R, and the boundary conditions along A’O, OB’. 

For the remaining regions, we follow the construction suggested in [2] section 5, 
using a blending function map [7] to map the four-sided subregions Rz , R, , Rd 
onto the unit square 0 < s, t < 1. 

Having transformed each of subregions Rz , R3 , R4, it is then convenient to use 
an expansion of the form 

G = 2, 3,4 (2.9) 
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where the P,(S) are suitable polynomials in each subregion, which for reasons of 
stability (see [IO]) we take to be the orthogonal polynomials 

P,(s) = P>;I,“‘(2s - 1) (2.10) 

where PkoPo) is the Legendre polynomial of degree k. With this choice of trial function, 
the boundary conditions on AA’ (subregion 2) and BC (subregion 3) are not satisfied 
exactly. 

None of the interface conditions are, of course, satisfied explicitly. 

3. RESULTS 

The results presented in this paper have been obtained using a semicircle of radius 
a = 0.5 for R, ; experiments showed that this value appeared to give the optimal 
accuracy both in the solution within each subregion and in the reproduction of the 
interface conditions. 

The integrals required in the matrix elements (2.7) were computed by a Gauss- 
Legendre rule, a product of two such rules being used for the double integrals. By 
exploiting the product nature of the trial function in R, , R, , R, a reasonably efficient 
method can be developed for the double integrals in these subregions. The double 
integrals in R, were done analytically since they are very simple in form. It was 
found that stable results were produced when a quadrature rule of sufficiently high 
order was used. 

For convenience, in (2.8) and (2.9) we chose 

Nt = N 7! = l,..., 4 

and thus there were a total of 3N2 + N trial functions present. Figure 2 shows the 
convergence of the first six variational parameters OI~ (I1 of eq. (2.8) to their exact values 
(from [13]) as a function of N. Here the relative error 

has been plotted. The accuracy achieved for each parameter for a given N gradually 
decreases with i, the final results (N = 9) for cu:” and I# being accurate to about 6 
and 2 figures respectively. The points are well fitted by the parallel straight lines 
shown indicating, from the log-linear scale used, a convergence w.r.t. N of the form 

Ei(N) = CM", C constant; 0 < A < 1 (3.1) 

The ability to achieve such exponentially fast convergence appears to be a major 
advantage of the GEM. As might be expected from figure 2, good results are obtained 
for the solution at points close to 0. Table 1 shows the convergence of the GEM 
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FIG. 2. Convergence of the variational coefficients in RI to the exact values against N. 

results at a selection of points in R, . Clearly as N increases, satisfactory convergence 
is obtained, the final converged results being consistent with the exact solution [19] 
to the number of figures quoted. 

Similarly, table 2 shows the results obtained at a set of points remote from 0. 
These points require the solution in each of R, , R, , R, and hence give a representative 
sample of the convergence in each subregion. (Note that where a point lies on the inter- 
face of two subregions, the average value of the solution in each subregion is given). 
Again satisfactory convergence is obtained to the exact results (where available). 
Table 2 also indicates that the GEM is successfully reproducing the boundary condi- 
tion on BC (x = 1) as N increases. The results of tables 1 and 2 are typical of the 
agreement found with the exact results throughout the region. 
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TABLE 1 

Cbnvergence of the solution at points (x, y) close to 0” 

b, Y) 
N (-l/14, l/28) (-l/28, l/28) (0, 1128) W’8, l/28) (1114, l/28) 

2 

3 

4 

5 

6 

7 

8 

9 

Whiteman & 
Papamichael 

Morley 

30.029 37.149 54.228 80.693 103.380 

25.444 34.375 54.337 85.403 114.115 

24.879 33.679 53.311 83.854 112.095 

24.805 33.590 53.187 83.676 111.875 

24.809 33.593 53.188 83.674 111.868 

24.808 33.592 53.186 83.672 111.865 

24.808 33.592 53.186 83.671 111.865 

24.808 33.592 53.186 83.671 111.865 

24.81 33.59 53.19 83.67 111.86 

24.74 33.53 53.09 83.46 111.58 

@ Also shown are the results of Whiteman and Papamichael [19] and Morley [ll]. 

TABLE 2 

Convergence of the solution at points (x, y) remote from 0” 

k Y) 
N 

2 

3 

4 

5 

6 

7 

8 

9 

Whiteman & 
Papamichael 

(-1,417) (-417,417) (0,4/7) (417,417) (1,417) 

113.615 60.817 216.368 368.190 583.626 

63.608 87.664 181.166 345.406 493.844 

72.235 89.421 185.426 356.563 499.647 

72.183 89.679 183.750 356.689 500.236 

72.251 89.785 183.969 356.669 499.981 

72.222 89.805 183.910 356.672 499.993 

72.223 89.803 183.911 356.677 499.999 

72.221 89.803 183.908 356.677 500.000 

- 89.80 183.91 356.68 500 

0 Also shown are the results of [19]. 
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FIG. 3. The quantity X,, (see Sect. 2.4) against N. The interface is indicated as l/m. The parallel 
straight lines are an indication of the exponential convergence rate. 

So far we have concentrated only on the convergence of the solution at a set of 
points. An important feature of the GEM is the ability to implicitly satisfy the inter- 
face conditions. Figure 3 shows the results obtained for the discontinuity in the 
solution across the various interfaces &, . Here we have plotted the quantity 

Again, exponentially fast convergence is achieved, with the rate of convergence 
approximately the same at each interface. While the difference in solution values is 
decreasing, the solution on each side of the interface is tending to stabilise (as do the 
results in tables 2 and 3) and thus the GEM is successfully reproducing the interface 
conditions. 
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FIG. 4. The quantity Y&, (see Sect. 2.4) against N. The interface is indicated as d/m. The straight 
lines are an indication of the exponential convergence rate. 

Finally, figure 4 shows the results for the discontinuity of the normal derivatives. 

Y,, = 
Is ( 

a&) 
ant 

aw',m' 2 ds l/2 - - 
un + an, 1 i 

Note the addition sign in this latter expression. These results also demonstrate 
exponentially fast convergence, though at a rather slower rate than for A’& . 

From the viewpoint of the GEM, the results of Morley [ll] are particularly inte- 
resting. These results were obtained using 8 FEM incorporating singular functions 
of the form (2.8). Morley makes the point that his converged results are probably 
sufficiently accurate for practical purposes (see Table 1, where the Morley results 
are accurate to about 0.3 %) but he classes them as unsatisfactory due to the behaviour 
of the coefficients associated with these singular functions. Table 3 shows the con- 
verged coefficients (suitably modified to take account of the differing size of his 
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TABLE 3 

Values of the variational coefficients in RI 

GEM (N = 9) 

Rosser & 
Papamichael 

Morley 

=1 % % % 

401.162 87.6558 17.2381 -8.07045 

401.1625 87.65592 17.23792 -8.071215 

401.41 88.61 - 20.07 -26.78 

rectangle) together with the exact values and the final GEM values. There is clearly 
satisfactory agreement for the first coefficient. but not for the last two. Thus the cause 
of trouble in [ll] is the poor determination of these higher coefficients, since in the 
method used there these higher singular functions are themselves capable of being 
approximated by the finite elements (see [5]). In the GEM this is not so since only one 
type of trial function is used near the singular point. 

Griffiths [6] has also recently emphasised that the estimates of the coefficients of 
singular functions obtained from such a FEM calculation can depend critically on 
the detailed form of the singular functions. 

4. FURTHER COMMENTS 

In this paper we have considered the solution of a singular boundary value problem 
using the recently proposed GEM. We have demonstrated that the GEM is a feasible 
computational tool, and (at least for this problem) an exponentially fast convergence 
rate is achieved even in the neighbourhood of the singular point. From a comparison 
with the exact CTM results, the GEM yields very accurate results both for the solution 
and for the coefficients associated with the singular behaviour. This is particularly 
encouraging since none of the general numerical methods (finite differences or finite 
elements) referred to in Section 1 approach this accuracy (especially close to the 
singularity). Since the GEM is not restricted to the Laplacian operator used here, 
it may prove useful for determining accurate results for singular problems for which 
the CTM is not applicable. 

We have not been primarily concerned with the efficiency of the method from the 
computational cost point of view. The programme used here had operation count 
for large N: 

Setup matrices: O(N5) approximately. 
Solve equations: O(N*) 

These counts are rather high. However, it is possible to achieve counts of O(N4) for 
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both phases of the work, this being achieved by careful choice of the trial functions 
(Chebyshev Polynomials) within the subregions; by using Fast Fourier techniques 
for the numerical quadratures; and by the use of an iterative technique to solve the 
linear equations [4]. 

These latter techniques have yet to be tested in practice; however, the experience 
with the GEM to date, although limited, is encouraging. 
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